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Abstract: A main encounter in video segmentation is that the foreground object may move rapidly in the scene at the 

same time its presence and shape changes over time. While pairwise potentials used in graph-based algorithms support 

smooth labels between neighboring (super) pixels in space and time, they proposal only a myopic view of consistency 

and can be misled by inter-frame optical flow errors. We propose a higher order supervoxel label consistency potential 

for semi-supervised foreground segmentation. Given an initial frame with manual annotation for the foreground object, 

our approach propagates the foreground region through time, leveraging bottom-up supervoxels to guide its evaluations 

towards long-range coherent regions. We endorse our approach on three challenging datasets and complete state-of-the-

art results. 
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I. INTRODUCTION 

 

The process of Image mining is searching and discovering valuable data and knowledge in large volumes of data. The 

image mining process have some of the methods used to gather knowledge are, Image Retrieval, Data Mining, Image 

Processing and Artificial Intelligence. In video, the foreground object segmentation problematic consists of classifying 

those pixels that belong to the primary object(s) in every frame. A resulting foreground object segment is a space-time 

―tube‖ whose shape may deform as the object moves over time. The difficult has an array of potential applications, 

including doings recognition, object recognition, video summarization, and postproduction video editing.  

Current algorithms for video segmentation can be organized by the amount of manual annotation they assume. At one 

exciting, there are only unsupervised methods that produce coherent space-time regions from the bottom up, without 

any video-specific labels [8, 12, 14, 17, 19, 21, 36, 38, and 39]. At the other extreme, there are strongly supervised 
communicating methods, which require a human in the loop to correct the system’s errors [4, 10, 20, 25, 34, and 35]. 

Between either extreme, there are semi-supervised methods that need a partial amount of direct supervision—an outline 

of the foreground in the first frame—which is then propagated spontaneously to the rest of the video [2, 3, 10, 27, 31, 

33]. We are concerned in the final semi-supervised task: the aim is to take the foreground object segmentation drawn 

on an initial frame and accurately propagate it to the remains of the frames. The propagation paradigm is a convincing 

middle ground. First, it removes ambiguity about what object is of interest, which, despite impressive advances [17, 19, 

21, 39], remains an inherent drawback for unsupervised methods. Accordingly, the propagation setting can 

accommodate a broader class of videos, e.g., those in which the object does not move much,or shares appearance with 

the background. Second, propagation from just one human-labeled frame can be considerably less burdensome than 

human-in-theloop systems that require constant user interaction, making it a promising tool for gathering object tubes 

at a large scale. While heavier supervision is warranted in some domains (e.g., perfect rot scoping for graphics), in 
many applications it is worthwhile to trade pixel-perfection for data volume (e.g., for learning object models from 

video, or assisting biologists with data collection). We propose a foreground propagation method using supervoxel 

higher order potentials. Supervoxels—the space-time analog of spatial superpixels—provide a bottom-up volumetric 

segmentation that tends to preserve object boundaries [8, 12, 14, 36, 38]. To leverage their broader structure in a graph-

based propagation algorithm, we supplement the usual adjacency-based collections with potentials for supervoxel-

based cliques. These original cliques specify soft preferences to assign the same label (fg or bg) to superpixel nodes 

that occupy the same supervoxel. Whereas existing models are restricted to adjacency or flow-based links, supervoxels 

proposal valuable longer-term temporal constraints. We authenticate our approach on three challenging datasets, Seg 

Track [31], YouTube Objects [23], and Weizmann [13], and compare to state-of-the-art propagation methods. Our 

approach outperforms current techniques overall, with particular benefit when foreground and background appearance 

similar, inter-frame motion is high, or the aim changes shape between frames. 
 

II. RELATED WORK 
 

Unsupervised video segmentation Unsupervised video segmentation methods proficiently extract coherent collections 

of voxels. Hierarchical graph-based approaches use arrival and flow to group voxels [14, 38], while others group super 
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pixels using spectral clustering [12] or novel tracking techniques [5, 32]. Distinct from the region-based methods, 

tracking methods use point trajectories to detect cohesive moving object parts [7, 18]. Any such bottom-up method 

tends to reservation object boundaries, but ―over segment‖ them into numerous parts. As such, they are notintended as 

object segmentations; rather, they make available a mid-level space-time grouping valuable for downstream tasks. 
 

2.1. Interactive Video Segmentation  

At the other end of the spectrum are interactive methods that assume a human annotator is in the loop to correct the 

algorithm’s mistakes [4, 20, 25, 35], any by monitoring the results closely, or by responding to active queries by the 

system [10, 33, 34]. While such intensive supervision is warranted for some submissions, particularly in graphics [4, 

20, 25, 35], it may be overkill for others. We focus on the foreground propagation problem, which assumes supervision 

in the form of a single labeled frame. Regardless, developments due to our super voxel idea could also benefit the 

interactive methods, some of which start with a similar MRF graph structure [10, 20, 25, 33] (but lack the proposed 

higher order potentials). 

 

2.2. Semi-supervised Foreground Propagation  

Most relevant to our work are methods that accept a frame labeled physically with the foreground region and propagate 
it to the remaining clip [3, 10, 27, 31, and 33]. While different in their optimization strategies, greatest prior approaches 

use the core MRF structure designated above, with i) unary potentials determined by the labeled foreground’s 

appearance/motion and ii) pairwise potentials determined by nodes’ temporal or spatial adjacency. Pixel-based graphs 

can maintain actual fine boundaries, but suffer from high computational cost and noisy temporal links due to unreliable 

flow [3, 33]. Superpixelbased graphs form nodes by segmenting each frame independently [10, 27, 31]. Associated to 

their pixel counterparts, they are much more efficient, less disposed to to optical flow drift, and can estimate neighbors’ 

similarities additional robustly due to their better spatial extent. Nonetheless, their use of per-frame segments and 

frame-to-frame flow links limits them to short range communications. In contrast, our key idea is to impose a super 

voxel potential to encourage consistent labels across broad spatial-temporal regions. 

 

III. METHODOLOGY 

 

The input to our approach is a video clip and one labeled frame in which an annotator has outlined the foreground 

object of interest. The output is a spacetime segmentation that propagates the foreground (fg) or background (bg) label 

to every pixel in every frame. While the foreground object must be present in the labeled frame, it may leave and re-

enter the scene at other times.  

 

3.1 Motivation and Approach Overview  

Our highest objective is to define a space-time graph and energy function that respect the ―big picture‖ of how objects 

move and evolve throughout the clip. Key to our idea is the use of super voxels. Super voxels are space-time regions 

computed with a bottom-up unsupervised video segmentation algorithm [14, 36, and 38]. They typically over 

segment—meaning that objects may be parceled into many super voxels—but the object boundaries remain visible 

among the super voxel boundaries. They vary in shape and size, and will typically be larger and longer for content 
more uniform in its color or motion. Though a given object part’s super voxel is unlikely to remain stable through the 

entire length of a video, thanks to temporal endurance, it will often persist for a series of frames. For example, in Figure 

1, we see a number of larger super voxels remain steady in early frames, then some split/merge as the dog’s pose 

changes, then a revised set again stabilizes for the latter chunk of frames. As we will see below, our approach exploits 

the partial stability of the super voxels but also recognizes their noisy imperfections. 

 

 
Fig. 1: Example super voxels, using [14]. Unique colors are unique super voxels, and repeated colors in adjacent 

frames refer to the same super voxel. Best viewed in color. 
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A naive simplification to video would build a graph with super voxels as nodes, connecting adjacent super voxels in 

space and time. The problematic is the irregular shape of super voxels—and their widely varying temporal extents—

lead to brittle graphs. As we will see in the results, the pairwise potentials in such amethod lead to frequent bleeding 

across object boundaries.  
Instead, we propose to leverage super voxels in two ways. First, for each super voxel, we project it into all of its child 

frames to obtain spatial super pixel nodes. These nodes have sufficient spatial extent to calculate rich visual features. 

Plus, compared to standard super pixel nodes computed independently per frame [3, 8, 10, 12, 25, 27, 31], they benefit 

from the broader perspective provided by the hierarchical space-time segment that generates the super voxels. For 

example, optical flow similarity of voxels on the dog’s textured collar may preserve it as one node, whereas per-frame 

segments may break it into many. Secondly, we leverage super voxels as a higher-order potential. Augmenting the 

usual unary and pairwise terms, we enforce a soft label consistency constraint among nodes originating from the same 

super voxel. Again, this offers broader context to the propagation engine. 

 

 
Fig. 2: Proposed spatio -temporal graph. Nodes are super pixels (projected from super voxels) in every frame. Spatial 

edges exist if the super pixels have boundary overlap (black); temporal edges are computed using optical flow (red). 
Higher order cliques are defined by super voxel membership (dotted green). For legibility, only a small subset of nodes 

and connections are depicted. Best viewed in color. 

 

3.2 Space-time MRF Graph Structure  

We first formally define the proposed spatio-temporal Markov Random Field (MRF) graph structure G consisting of 

nodes X and edges E. Let X = {Xt} T t=1 be the set of superpixels2 over the entire video volume, where T refers to the 

number of frames in the video. Xt is a subset of X and contains super pixels belonging only to the t-th frame. Therefore 

each Xt is a collection of super pixel nodes {x i t} Kti=1, where Kt is the number of super pixels in the t-th frame.  

We subordinate a random variable y i t ∈ {+1, −1} with every node to represent the label it may take, which can be 

either object (+1) or background (-1). Our goal is to obtain a labeling Y = {Yt} T t=1 over the entire video. Here, Yt = 
{y i t} Kti=1 represents the labels of super pixels belonging only to the t-th frame. Below, (t, i) indexes a super pixel 

node at position i and time t.  

We define an edge set E = {Es, Et} for the video. Es is the set of spatial edges between super pixel nodes. A spatial 

edge exists between a pair of super pixel nodes (x it , x j t ) in a given frame if their boundaries overlap (black lines in 

Figure 2). Et is the set of temporal edges. A temporal edge exists between a pair of super pixels (x it , x j t+1) in 

adjacent frames if any pixel from x i t tracks into x j t+1 using optical flow (red lines in Figure 2). We use the algorithm 

of [6] to calculate dense flow between following frames. Let [(t, i),(t 0 , j)] index an edge between two nodes. For 

spatial edges, t 0 = t; for temporal edges, t 0 = t + 1. 

Finally we use S to denote the set of super voxels. Each element v ∈ S represents a higher order clique (one is shown 

with a green dashed box in Fig. 2)over all the super pixel nodes which are a part of that super voxel. Let yv denote the 

set of labels assigned to the super pixel nodes belonging to the super voxel v. For each super pixel node x it , we 
compute two image features using all its pixels: 1) an RGB color histogram with 33 bins (11 bins per channel), and 2) a 

histogram of optical flow, which bins the flow orientations into 9 uniform bins. We concatenate the two descriptors and 

compute the visual dissimilarity between two super pixels D(x it , x j t 0 ) as the Euclidean distance in this feature 

space. 

 

3.3. Energy Minimization and Parameters 

The energy function defined in Eqn. 1 can be capablyreduced using the α- expansion algorithm [16]. The optimal 

labeling corresponding to the minimum energy yields our initial fg-bg estimate. We iteratively refine that output by 
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reestimating the appearance model—using only the most self-assured samples based on the current unary potentials—

then answering the energy function again. We perform three such iterations to obtain the final output.  

The only three parameters that must be set are λapp and λloc, the weights in the appearance potential, and the 

truncation parameter Q. We determined reasonable values (λapp = 100, λloc = 40, Q = 0.2 |yv|) by visual inspection of 
a couple outputs, then fixed them for all videos and datasets. (This is minimal effort for a user of the system. It could 

also be done with cross-validation, when adequate pixel-level ground truth is available for training.) The 

remainingparameters βu, βp, and βh, which scale the visual dissimilarity for the unary, pairwise, and higher order 

potentials, respectively, are all set automatically as the inverse of the mean of all individual distance terms. 

 

 
Fig. 3: Example results on SegTrack. Best viewed in color. 

 

IV. RESULTS 

 
Datasets and metrics: We evaluate on 3 publicly available datasets: SegTrack [31], YouTube-Objects [24], and 

Weizmann [13]. For SegTrack and YouTube, the true object region in the first frame is supplied to all methods. We use 

standard evaluation metrics: average pixel label error and intersection-over-union overlap.  

Methods compared: We compare to five state-of-the-art methods: four for semi-supervised foreground label 

propagation [9, 10, 31, 33], plus the state-ofthe-art higher order potential method of [8]. Note that unsupervised 

multiplehypothesis methods [17, 19, 21, 39] are not comparable in this semi-supervised single-hypothesis setting. We 

also test the following baselines:  

– SVX-MRF: an MRF comprised of super voxel nodes. The unary potentials are initialized through the labeled frame, 

and the smoothness terms are defined using spatio-temporal adjacency between super voxels. It highlights the 

importance of the design choices in the proposed graph structure.  

– SVX-Prop: a simple propagation scheme using super voxels. Starting from the labeled frame, the propagation of 

foreground labels progresses through temporally linked (using optical flow) super voxels. It illustrates that it’s non-
trivial to directly extract foreground from super voxels.  

– PF-MRF: the existing algorithm of [33], which uses a pixel-flow (PF) MRF for propagation. This is the only video 

segmentation propagation algorithm with publicly available code.4 Note that the authors also propose a method to 

actively select frames for labeling, which we do not employ here.  

– Ours w/o HOP: a simplified version of our method that lacks higher order potentials (Eqn. 7), to isolate the impact 

of super voxel label consistency. 

 

 
Fig. 4: Foreground precision (left) and recall (right) on Weizmann. Legend shows number of labeled frames 

used per result (1 to 9 for our method, 40-125 for [8]). 
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Figure 4 shows the results in terms of foreground precision and recall, following [8]. Whereas we output a single fg-bg 

estimate (2 segments), the method of [8] outputs an over segmentation with about 25 segments per video. Thus, the 

authors use the ground truth on each frame to map their outputs to fg and bg labels, based on mainstream overlap; this 

is equivalent to obtaining on the order of 25 manual clicks per frame to label the output. In contrast, our propagation 
method uses just 1 labeled frame to generate a complete fg-bg segmentation. Therefore, we show our results for 

increasing numbers of labeled frames, spread uniformly through the sequence. This requires a multi-frame extension of 

our method—namely, we take the appearance model Gyt from the labeled frame nearest to t, and re-initialize the spatial 

prior L i t (y i t ) at every labeled frame. 

 

V. CONCLUSIONS 

 

We introduced a new semi-supervised method to propagate object regions in video. Outstanding to its higher order 

super voxel potential, it outperforms the state-of the-art on over 200 classifications from 3 distinct datasets. In future 

work, we plan to extend the idea to accommodate numerous and/or hierarchical super voxel inputs, and to explore 

shape descriptors to augment the foreground representations. 
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